220 文字
1 分で読めます
二変数関数のテイラーの展開式証明とLatex使用練習

Q.1 二変数の関数のテイラーの展開式を証明しなさい。 ある二変数関数

z=f(x,y)z=f(x,y)

が領域でn+1回連続偏微分可能であり、

(x0,y0) と (x0+h,y0+k)(h,kR)\small(x_{0},y_{0}) と (x_{0}+h,y_{0}+k) (h,k \in R)

は関数上にて、その結ぶ線も領域Dに属するとき

f(x0+h,y0+k)=f(x0,y0)+(hx+ky)f(x0,y0)+12!(hx+ky)2f(x0,y0)++1n!(hx+ky)nf(x0,y0)+Rn\scriptsize f(x_{0}+h,y_{0}+k)=f(x_{0},y{0})+(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})f(x_{0},y_{0})+\\ \scriptsize \frac{1}{2!}(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^2f(x_{0},y_{0})+\cdots+\frac{1}{n!}(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^nf(x_{0},y_{0})+R_{n}

が存在する、

一般的に

(hx+ky)nf(x0,y0)p=0mCmphpkmpmfxpymp(x0,y0)\scriptsize (h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^nf(x_{0},y_{0}) \rightarrow \sum_{p=0}^{m}C_{m}^{p}h^pk^{m-p} \frac{\partial^{m}f}{\partial x^p \partial y^{m-p}}\lvert_{(x_{0},y_{0})} Rn=1(n+1)!(hx+ky)n+1f(x0+θh,y0+θk)(θ(0,1))\scriptsize R_{n}=\frac{1}{(n+1)!}(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^{n+1}f(x_{0}+\theta h,y_{0}+\theta k)(\theta \in (0,1))

証明:

関数

z=f(x0+h,y0+k)z=f(x_{0}+h,y_{0}+k)

定数tを引用して、

z(t)=f(x0+ht,y0+kt)(t[0,1])z(t)=f(x_{0}+ht,y_{0}+kt) (t \in [0,1])

とおく

z(0)=f(x0,y0),z(1)=f(x0+h,y0+k)\scriptsize z(0)=f(x_{0},y_{0}),z(1)=f(x_{0}+h,y_{0}+k) z(t)=hxz(t)+kyz(t)\scriptsize z'(t)=h\frac{\partial}{\partial x}z(t)+k\frac{\partial}{\partial y}z(t) z(t)=(hx+ky)z(t)\scriptsize \rightarrow z'(t)=(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})z(t) z(t)=h222xz(t)+2h2xyz(t)+k222yz(t)\scriptsize z''(t)=h^2\frac{\partial^2}{\partial^2 x}z(t)+2h\frac{\partial^2}{\partial x \partial y}z(t)+k^2\frac{\partial^2}{\partial^2y}z(t) z(t)=(hx+ky)2z(t)\scriptsize \rightarrow z''(t)=(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^2z(t) zn+1(t)zn+1(t)=(hx+ky)n+1z(t)\scriptsize z^{{\underbrace{ ''\cdots''}_{n+1}}} (t) \rightarrow z^{n+1}(t)=(h\frac{\partial}{\partial x}+k\frac{\partial}{\partial y})^{n+1}z(t)

z(t)は、マククローリンの定理を適用すると、t=1のときに展開する、

z(1)=z(0)+z(0)+12!z(0)++1n!zn(0)+1(n+1)!zn+1(θ)(θ(0,1))\scriptsize z(1)=z(0)+z'(0)+\frac{1}{2!}z''(0)+\cdots+\frac{1}{n!}z^{n}(0)+\frac{1}{(n+1)!}z^{n+1}(\theta) \\(\theta \in (0,1))

代入すると、

f(x0+h,y0+k)=f(x0,y0)+(hx+ky)f(x0,y0)+12!(hx+ky)2f(x0,y0)++1n!(hx+ky)nf(x0,y0)+1(n+1)!(hx+ky)n+1f(x0+θh,y0+θk)(θ(0,1))\scriptsize f(x_{0}+h,y_{0}+k)=f(x_{0},y{0})+(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})f(x_{0},y_{0})+\frac{1}{2!}(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^2f(x_{0},y_{0})+\cdots+\\ \scriptsize \frac{1}{n!}(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^nf(x_{0},y_{0})+\frac{1}{(n+1)!}(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y})^{n+1}f(x_{0}+\theta h,y_{0}+\theta k)(\theta \in (0,1))

が得る。

Q.E.D

二変数関数のテイラーの展開式証明とLatex使用練習
https://seikasahara.com/ja/posts/rfti/
作者
Edward Calhoun
发布于
2021-10-17
License
CC BY-NC-SA 4.0